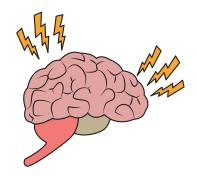


# Traumatic Brain Injury Handbook

- Page 2 Introduction
- Page 3 Anatomy and Physiology Recap
- Page 4-5 Classification of Brain Injury
- Page 6 Acute Management
- Page 7 ACJ Dislocations
- Page 9 Assessment and Impairments
- Page 10-11 Treatment
- Page 12-14 Rehabilitation
- Page 14 Summary
- Page 15 Where to Find Us




Liv Tenberg Specialist Neuro Physiotherapist



### Introduction

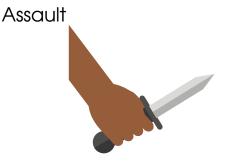
### **Definition: Traumatic Brain Injuries**

- "Traumatically induced physiological disruption of brain function and/or structure resulting from the application of a biomechanical force to the head, rapid acceleration and/or deceleration, or blast forces" (Kay et al, 2003)
- Any trauma to the head other than superficial injuries to the face (NICE, 2014)

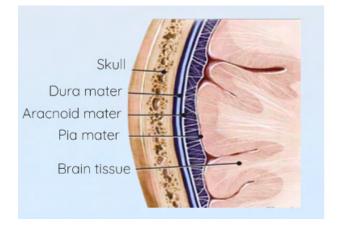


- Most common cause of death and disability in people aged 1-40 years
- Highest incidence people aged 15-45 years
- Males 3x more likely

### Causes: Traumatic Brain Injuries




Road traffic accidents

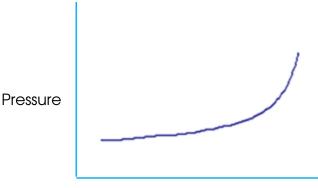



### Sports Injuries





# Anatomy and Physiology Recap




### Monroe Kellie Doctrine

| • Brain             | 80%  |
|---------------------|------|
| Cerebrospinal fluid | 10%  |
|                     | 100/ |

Cerebral blood volume
 10%

### All components are in a dynamic state of equilibrium



- Brain
  - Oedema
  - Space occupying lesions (tumour)
- Cerebrospinal fluid
  - Reduced absorption
  - Reduced circulation or obstruction
- Cerebral blood volume
  - Haematoma
  - Sub aracnoid haemorrhage
  - Vasodilation

### **Definitions and values**

#### Intracranial pressure

• Pressure exerted within the skull by the brain tissue, CSF and blood volume. 0-15mmHg

#### Mean arterial pressure

• The average arterial pressure during a single cardiac cycle

#### Cerebral perfusion pressure

Pressure at which brain tissue is perfused with blood. CPP = MAP – ICP

Volume

# Classification of Brain Injury

| Pathophysiology                                                                                                               | Туре                                                             | Severity                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Primary</li><li>Secondary</li></ul>                                                                                   | <ul><li>Focal</li><li>Diffuse</li><li>Open/penetrating</li></ul> | <ul><li>Mild</li><li>Moderate</li><li>Severe</li></ul>                                                                     |
| • SI<br>• S                                                                                                                   | Compression<br>hearing<br>tretching<br>hertial forces            | Secondary injury<br>• Haemotoma formation<br>• Biochemical processes<br>• Reduced blood flow<br>• Raised ICP<br>• Ischemia |
| <b>Types of Primary injury</b><br><b>Focal</b><br>• Extradural haemotoma<br>• Subdural haemotoma<br>• Subarachnoid haemorrhag |                                                                  | Subdural<br>Subdural<br>Subdural<br>Subarachnoid<br>haemorrhage                                                            |
| Intracranial                                                                                                                  |                                                                  | Diffuse         Acceleration /         deacceleration /         shearing forces         Open/penetrating                   |

Infracranial haemorrhage





Normal CT

Local damage - e.g gun shot

# Classification of Brain Injury

CLASSIFICATION ALSO DEPENDS ON ...

- Mild
- Moderate
- Severe



Glasgow Coma Scale (GCS)

Post traumatic Amnesia (PTA)

### Glasgow Coma Scale (GCS)



- Eye opening
- 4 Spontaneously
- 3 -Verbal command
- 2 Pain
- 1 No eye opening



#### Verbal response

- 5 Orientated
- 4 Confused
- 3 Inappropriate words
- 2 Incomprehensible sounds
- 1 No verbal response



### Motor response

- 6- Obeys commands
- 5 Localises pain
- 4 Withdraws from pain
- 3 Flexion to pain
- 2 Extension to pain
- 1 No motor response

### Post Traumatic Amnesia (PTA)

The period from the accident until the person is orientated to their surroundings There may be difficulties with memory, orientation, and processing of information

- Westmead PTA scale (/12)
  - 7 orientation questions
  - 5 memory
- Galveston Orientation and Amnesia Test

| Severity of injury | GCS   | Duration of post traumatic amnesia |
|--------------------|-------|------------------------------------|
| Mild               | 13-15 | 5-60 mins                          |
| Moderate           | 9-12  | <24 Hours                          |
| Severe             | 3-8   | 1 to > 28 Days                     |

## Acute Management

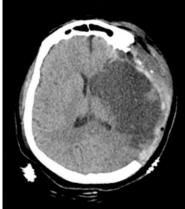
### Case study 1 - John

31 year old gentleman admitted 4 days ago following an RTC motorcycle vs car.

He has a diffuse axonal traumatic brain injury, right 3-5 ribs fractures with no flail segments and a fractured right clavicle.

### Medical aims

- 1. Prevent secondary neurological injury
- 2. Monitor ICP and consciousness
- 3. Prevent complications
- 4. Manage other chest, abdominal and musculoskeletal injuries


### Aim to keep ICP <20

- 1.Strict Co2 control
  - Sedation (+/- paralysis) and mandatory ventilation
  - Co2 targets 4.0-4.5
- 2. Maximise cerebral perfusion
  - CPP 55 -70mmHg, PbO2 > 15, spO2 > 94%
- 3. Positioning
  - Head elevation 15-30 deg, spine neutral no compression of carotids to alter BF to brain

### **Emergency surgery**

Decompressive craniectomy

Relieve pressure to reduce ICP











## Acute Management

### Case study 1 - John

He has had a decompressive craniectomy, is sedated and paralysed, intubated and ventilated on SIMV ICPs 10-15 spiking to 35 on lying supine His chest x-ray from yesterday shows a R lower zone consolidation and the nursing staff report suctioning small amounts of thick yellow secretions. ABG: pH 7.47, pO2 10.8, pCO2 4.0, BE -2.2, HCO3 20 CRP 278 (trending up), WBC 18.7 (trending up) Main goal: optimise respiratory status

What treatment contraindications/precautions are present?

- On ICP protocol and spiking to ICP 35
- Rib fractures manual techs contraindicated
- Fractured right clavicle implications for positioning
- On a mandatory mode of ventilation

### Would you treat this patient?

- Does respiratory status contribute to unstable condition?
- Can physiotherapy help the respiratory picture?
- How does the patient tolerate intervention?
- Is the patient optimised for treatment?

What treatment options do you have?

- Positioning
- Manual techniques
- Suction
- Assisted cough
- Manual hyperinflation
- Ventilator hyperinflation

### Acute Management

#### **Recommendations**

#### **Positioning**

- Try to treat head 15-30 deg
- Avoid head down tilt

#### <u>MHI</u>

- Brief application
- Intersperse with short duration hyperventilation
- Use manometer

### Case study 1 - John

2 weeks later, John has been weaned from mechanical ventilation and has had a tracheostomy inserted

### What are your main priorities for physiotherapy?

- Optimise respiratory function
- Tracheostomy weaning
- Spasticity management
- Therapeutic handling and positioning
- Early sitting and standing
- Monitoring patient's awareness
- Graded sensory stimulation
- Education and support for family and friends

### <u>Suction</u>

- Only when clinically indicated
- Preoxygenation
- Consider bolus of sedation prior
- Avoid stimulation of the carina Gemma et al, 2002

### Rehabilitation following acquired brain injury

National clinical guidelines



The guidelines were prepared by a multiclociplinary working party convened by the Britah Society of Rehabilitation Medicine (BSRM), Texas Society of and edited by Professor Lynne Texas Stakes on behaft of the Britah Society of Pehabilitation Medic and the Royal College of Physicians. The guidelines are published in collaboration with the Clinical Effectiveness and Evaluation Unit, Royal College of Physicians 2003

## Assessment and Impairments

No two people with traumatic brain injury will present the same

No predictable pattern to impairments - treat what you find!

#### Examples of Potential Symptoms

- Impaired swallow
- Visual deficits
- Weakness
- Reduced motor control
- Reduced balance
- Ataxia
- Spasticity

### Case study 1 - John

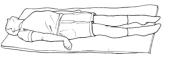
- Weakness
- Spasticity
- Reduced Range of Movement
- Reduced level of consciousness

- Reduced Range of Movement
- Aphasia
- Reduced level of consciousness
- Dyspraxia
- Cognitive Impairment
- Pain



John has sustained a severe brain injury and remains in a disorder of consciousness with a GCS of 8 (E4, V1, M3). He has abnormal posturing of his upper limbs into flexion and lower limbs into extension and has started to lose range into elbow extension

#### So what do we focus on with John?


### Treatment

#### Spasticity management

- 75% patients with severe traumatic brain injury will develop spasticity requiring specific treatment
- Complications if not managed
- Regular tone assessment with standardised measure (e.g. Ashworth)
- Regular monitoring of ROM (goniometer)
- Eliminate aggravating factors
- Physical management
  - Positioning / seating / standing
  - Splinting
  - Stretching
- Medical management
  - Antispasticity medication e.g. baclofen
  - Botulinum toxin
  - Intrathecal baclofen pump

### **Therapeutic Handling and Positioning**





Decerebrate posturing



Decorticate posturing



### Treatment

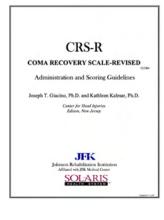
#### Early Sitting and Standing

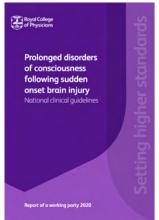
- Benefits include:
  - Improved consciousness
  - Maintaining soft tissue length in the lower limb
  - Lung, circulation and gastrointestinal tract function

Ng and King,2021



### Caution: orthostatic hypotension


### Monitoring John's Awareness


The Coma Recovery Scale Revised (CRS-R)

• 6 subscales: auditory, visual, motor, oromotor/verbal, communication, arousal

Wessex Head Injury Matrix (WHIM)

- 62 ordered behaviours
- Continue until 10 consecutive failures





#### **Graded Sensory Stimulation**

The application of environmental stimuli, by an external agent for the purpose of promoting arousal and behavioural responsiveness (Giancino, 1996)

- All sensory systems
- E.g. music, films/cartoons, familiar voices, sensory stimulation with touch
- Intersperse with rest periods
- Strong evidence multi-modal sensory stimulation can improve GCS

(Padilla and Domina, 2016)

### Advice and Education

- Joint sessions with family and friends
- Educate family and friends about John's treatment
- Signposting to support within hospital e.g. psychology
- Signposting to charity support e.g. Headway

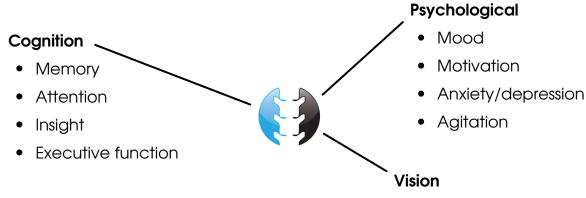


## Rehabilitation

### Case study 2 - Arthur

You meet Arthur whilst working in a rehabilitation unit. He is 19 and suffered a traumatic brain injury and polytrauma from a fall from scaffolding whilst at work. His injuries are as follows:




- Hemicraniectomy with no bone flap (wears a helmet)
- Left closed femur fracture fixed with ORIF
- Right open femur fracture ORIF + IM nail plus quads resection
- Bilateral calcaneal fractures
- Right elbow open terrible triad fracture dislocation radial head fixation, ulnar collateral ligament repair

#### No current restrictions

### Case study 2 - Arthur: ICF

| Impairments                          | Activity                                          | Participation                             |  |
|--------------------------------------|---------------------------------------------------|-------------------------------------------|--|
| Weakness                             | <ul> <li>Hand held assistance of 1 for</li> </ul> | <ul> <li>Not able to work</li> </ul>      |  |
| • R elbow and bilateral knee         | mobility and t/f                                  | Not able to play football                 |  |
| flexion contracture from             | <ul> <li>Not able to climb stairs</li> </ul>      | with friends                              |  |
| НО                                   | Assistance of 1 for washing                       | <ul> <li>Not able to go to the</li> </ul> |  |
| Spasticity L PFs                     | Assistance of 1 with all                          | cinema                                    |  |
| <ul> <li>Impaired vision</li> </ul>  | domestic tasks                                    |                                           |  |
| Cognitive impairment                 |                                                   |                                           |  |
| <ul> <li>Impaired balance</li> </ul> |                                                   |                                           |  |

#### Other factors that will affect physiotherapy rehab:



### Rehabilitation

### What should a treatment plan for Arthur involve?

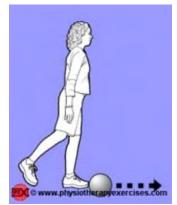
- Strength training lower limbs
- Gait re-education
- Balance training
- Cardiovascular exercise
- Repetitive task practice
- Botulinum toxin for left ankle plantar flexors

### Strength training

- Less is more
- Repetition
- Video exercises on Arthur's phone + App reminders
- Keep functional





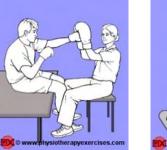





### Gait and Balance Training

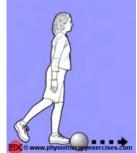
- Think about safety N.B. craniectomy
- Use the environment/equipment to make it safe
- Challenge your patients








## Rehabilitation


### Cardiovascular and Repetitive Task Training

- Guidelines for physical activity
- Repetition









### Botulinum toxin

- Forefoot lateral border initial contact in gait
- Weaken overactive muscles to allow antagonist to be strengthened
- Restore more normal gait pattern



stretching



electrical stimulation



dorsiflexor strengthening

### **IN SUMMARY!**

- No two people with traumatic brain injury will present the same
- Know your GCS scale and ICP limitations
- Respiratory optimisation
- Prevention of secondary complications
- No predictable pattern to impairments treat what you find!
- Work with your MDT
- Understand how other impairments affect your rehabilitation

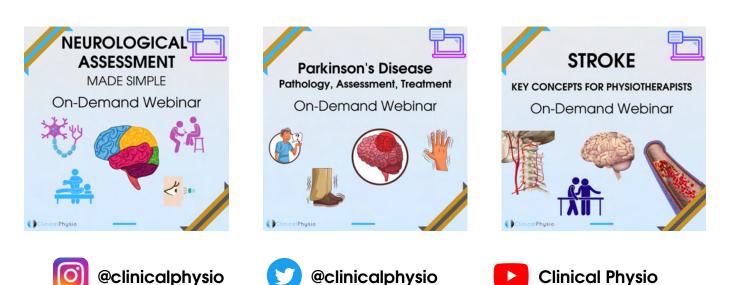


### Where to Find Us!



### THE EXCLUSIVE ALL-IN-ONE SUBSCRIPTION

### member.clinicaphysio.com




- All Live Webinars
- All On-Demand Webinars
- Handbooks + Personalised Certificates
- Our Brand New Member-Only Podcasts
- Written Resources
- Early Access Videos
- Community Forums and Support
- Exclusive Course Discounts

On-Demand Webinars www.clinicalphysio.com/on-demand-webinars If you liked this webinar, you may also like...



- \_ .. . \_.
- 👂 Parkinson's Disease
- Stroke: Key Concepts for Physiotherapists

